Many-Objective Pareto Local Search

نویسنده

  • Andrzej Jaszkiewicz
چکیده

We propose a new Pareto Local Search Algorithm for the many-objective combinatorial optimization. Pareto Local Search proved to be a very effective tool in the case of the bi-objective combinatorial optimization and it was used in a number of the state-of-the-art algorithms for problems of this kind. On the other hand, the standard Pareto Local Search algorithm becomes very inefficient for problems with more than two objectives. We build an effective Many-Objective Pareto Local Search algorithm using three new mechanisms: the efficient update of large Pareto archives with ND-Tree data structure, a new mechanism for the selection of the promising solutions for the neighborhood exploration, and a partial exploration of the neighborhoods. We apply the proposed algorithm to the instances of two different problems, i.e. the traveling salesperson problem and the traveling salesperson problem with profits with up to 5 objectives showing high effectiveness of the proposed algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Queued Pareto Local Search for Multi-Objective Optimization

Many real-world optimization problems involve balancing multiple objectives. When there is no solution that is best with respect to all objectives, it is often desirable to compute the Pareto front. This paper proposes queued Pareto local search (QPLS), which improves on existing Pareto local search (PLS) methods by maintaining a queue of improvements preventing premature exclusion of dominated...

متن کامل

The Application of Pareto Local Search to the Single-Objective Quadratic Assignment Problem

Pareto optimization, that includes the simultaneous optimization of multiple conflict objectives, has been employed as a high level strategy to reduce the effect of local optima (Segura et al. 2013). This approach was first introduced in (Louis and Rawlins 1993), and later reinvestigated and termed as multi-objectivization in (Knowles, Watson, and Corne 2001). Since then it has been studied by ...

متن کامل

Connectedness, Regularity and the Success of Local Search in Evolutionary Multi-objective Optimization

Local search techniques have proved to be very efficient in evolutionary multi-objective optimization(MOO). However, the reasons behind the success of local search in MOO have not yet been well discussed. This paper attempts to investigate empirically the main factors that may have contributed significantly to the success of local search in MOO. It is found that for many widely used test proble...

متن کامل

Using a new modified harmony search algorithm to solve multi-objective reactive power dispatch in deterministic and stochastic models

The optimal reactive power dispatch (ORPD) is a very important problem aspect of power system planning and is a highly nonlinear, non-convex optimization problem because consist of both continuous and discrete control variables. Since the power system has inherent uncertainty, hereby, this paper presents both of the deterministic and stochastic models for ORPD problem in multi objective and sin...

متن کامل

Guided Pareto Local Search and its Application to the 0/1 Multi-objective Knapsack Problems

Pareto Local Search (PLS) is a generalization of the local search algorithms to handle more than one objective. In this paper, two variants of PLS are examined on the multiobjective 0/1 knapsack problems, compared with three well-known multiobjective EA algorithms, namely SPEA, SPEA2 and NSGA2. Furthermore, A Guided Local Search (GLS) based multiobjective optimization algorithm is proposed, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1707.07899  شماره 

صفحات  -

تاریخ انتشار 2017